Search This Blog

Sunday, 28 May 2017

Telly - really?


I've started to play with Digital Television and the broadcasting thereof. The fist part of the puzzle was to construct a means of receiving my own signals so I chose the Minitiouner from the BATC of which I am a member.

I bought the PCBs and the bits and bobs from the BATC shop and have built the project:

The transmit side of things will be from the well publicised BATC project the Portsdown

There is quite a bit to this project, hardware wise, but initially we need a Raspberry Pi and some software to run something they call "Ugle Mode" whereby you can send a picture across the shack.

Well, it works:

So its time to progress the hardware some more and move forward with the transmitter side of the project.

Interesting start, egh?

Monday, 15 May 2017

A tracking what?


As part of the fiddling I've been doing on 13cm, I've been using the new to me (read old) spectrum analyser I have. It covers from about 9KHz up to 22GHz.

You may also recall not so long ago, that I made a signal generator that covered up to 4.4 GHz.

As this spectrum analyser has a 1st IF output socket, it struck me that I could probably make some kind of tracking generator to go with it. Actually the IF output will be doing the tracking, all I need is a signal and a mixer.

Some experimentation allowed me to discover that on the low range, the Spectrum Analyser has an IF output of 3910 MHz plus the tuned frequency.

I've made myself a simple Arduino Nano and AD4351 combination:

The source code for the above is here. I've not done anything clever at all, just used the Analogue Devices software I showed here to calculate the required registry values and then hard coded them into the Nano.

That gives me the 3910 MHz signal required. We then subtract that from the IF output from the Spectrum Analyser using a simple and small Mini Circuits mixer:

Then I've added a low cost return loss bridge from ebay:

Whilst it's not lab grade, in this example you can clearly see the resonant frequency of the antenna that's connected as the Device Under Test:

The difference between the trace with the DUT socket open (the thicker line) and the other trace is the return loss at the specific frequency.

You can see that the open circuit sweep is nowhere near flat - so there are all sorts of issues with this setup, but as a basic antenna analyser up to about 3GHz this works just fine.

All the while, Florrie the ham cat has been sitting on my rotator manual which I am consulting as the display bulb has died:

Local conditions.

Friday, 7 April 2017

I'm about there!


You'll remember last time I started modifying the 13cm PA I had acquired. Well, I think it's about done.

What we have is the modified PA, an Arduino Nano plus some software to monitor:
  • PA Temperature
  • Forward power
  • Reflected power
  • Bias current (driver, Left and Right PA MOSFETs separately)
and trip if anything goes out of bonk.

The Amplifier now looks like this:

I've just to wire up the Analogue inputs in this image. There are three "status" LEDs on the front panel; one for "All OK", one for "It's gone horribly wrong" and a final one for "TX". If you connect the serial cable to the Nano then there is a status line repeatedly output giving the details of all the inputs read and their values.

The connector on the main board of the Amp is configured like this:

and it was therefore a fairly simple case of wiring the various pins to the I/O of the Nano and writing some code. I stole a lot of the ideas for the code from Mike G0MJW - but there are quite a few differences between what I have ended up with and what Mike created a few years ago.

The 9V line to the bias and other bits of the board is permanently on; the 28V line is also enabled all the time but switched bu a FET switch under software control. This switch is the same as the one in the sequencer, it's just altered slightly for 28V:

I've stuck the source code here if anyone is interested.

Time now for some testing.....


A couple of minor software mods (updated on the link above) during testing and all seems to be OK. I am not entirely convinced about the scaling values used to convert from the ADC readings into the value units, but time will tell.

Here's the whole system - there's an IF cable from there to my IC9100 which is used on 70cm as the rig for the transverter:

Wednesday, 22 March 2017

Finally - All coming together


There have been many musings recently all building to a 13cm (2.3GHz) system:

  1. The Transverter
  2. The VLNA
  3. The masthead enclosure and switching
  4. The antennamabob
  5. The sequencer
So now I'm trying to glue it all together!

The case is a bit tall, but it's all I had. I created a very simple PSU based on a 723 voltage regulator and a 2SC5200 as a pass transistor - I have tried to over-rate the power supply (please excuse the terrible layout below):

That plus the transverter and sequencer we played with previously.

The Gubbins basically remains the same as designed:

So, there is a VLNA at the masthead next to the antenna and two co-ax feeds back to the shack - one for TX and one for RX. The TX is 15mm Web-600 and the RX line Westflex 103.

This is all driven from 423 Mhz multi-mode transceiver - I plan to use the IC9100.

Now for the linear amplifier, I picked up one of these for basically scrap metal value:

There is information on modifying the unit for our purposes here.

As ever, the first thing required is to take it to bits, once you get the bottom off this is revealed:

then that board comes out and slung to one side:

then we remove another million screws and get the screen out of the way:

and then the top of those two boards gets slung:

Now we need to lift a cap off the board and connect in where our RF feed will be:

Now for the bias for those lovely MOSFETS....  here's the board with my bodged bias circuit:

I reached out through the UK Microwavers Yahoo! group and have received some very useful information including this:

I've added an Arduino Nano into my enclosure and may have a bash at reading some of those control signals:

And throughout, Florrie the Ham cat has been assisting:

Next, a bit of testing.....

Local conditions.

Friday, 10 March 2017

13cm Antennamabob


You may recall back here I installed a 13cm antenna on the mast, and here I built the 13cm VLNA from @DXING G4DDK. The VLNA is now mounted masthead with the associated switching and a separate feed for TX and RX as I described here:

I've also recently acquired myself a much wider frequency coverage Spectrum Analyser; it's a very old HP8593A which covers up to 22GHz and came from here and has nice things like a 2 year warranty:

So, using the Signal Generator I made back here, and a cheap Chinese directional coupler being used the "wrong way" round;

like this:

I can leave the Device Under Test port open circuit and see the amplitude of the signal from the sig gen on the Spec An. If I then connect the antenna to the DUT port and calculate the difference between the open signal and the signal with the antenna connected - that should be the return loss in dB:

So apologies for the really rubbish photo, but the higher peak is with the DUT open circuit - so a really pants SWR and the lower peak is with the antenna connected. That's a difference of about 30dB. So using the maths we established back here we can deduce that the SWR is about 1.07:1 - which is bang on the money.

I was rather hoping I could hear the Leicester beacon GB3LES on 2320.955MHz - but I can't. So there may be a number of reasons for that - including my poor N-Type connector soldering, so I will have to look further.

But progress none the less!


The Leicester beacon has a fixed antenna beaming 160 degrees from its location - that's almost completely in the wrong direction for me! I've tuned to the Telford beacon on 2320.870MHz and I can hear the beacon just fine - RX working!

Local conditions.

Wednesday, 8 March 2017

6&4M Antenna and other Musings


I decided a while ago to remove the large 6/4M combined antenna I have - it's very big and heavy:

So, I decided a while ago to replace the 6/4M antenna with a 3 + 3 ele version that we originally bought for the UK ACs; this antenna had very little front to back so I wasn't happy with it for home. I've now decided to purchase the 4 + 4 ele version. All these antennas are from Innovantennas.

Now, I've bought quite a few antennas from them in my time - perhaps 10 or more. Every single one has had either no manual (sent by email normally), missing parts, the wrong parts or even one had the boom drilled incorrectly. This 4 + 4 ele is a bit better, it only had one broken pipe clamp. The instructions you receive from InnovAntennas are poor at best, but this example has to be the worst yet; take a look:

Now, there's something scribbled in the top right that looks like "ADD over Cap" - no idea what that means.

There's a box drawn on the 4M driven element and then scribbled out.

There's a box drawn on the 6M driven element with a scrawl that says "Plate oh tend Point" (I think this is plate at feed point) so we conclude that this was first scrawled on the 4M driven element and then crossed out.

Nothing to tell me which bolts to use where or anything resembling how to put it together.

Great antennas - rubbish quality control and instructions!

I've also continued the theme of 'scope obsession by making a circuit from W2AEW. This is a means of converting a composite video output (from say a camera) and displaying it on a 'scope screen by using the X, Y and Z inputs:

My build looks like this:

and it works a treat!

When Miss Luna Cat rolls on her back like this in front of Elmo Dog, this is interpreted, in human speak, as "thank God it's spring".

Local conditions.

Monday, 20 February 2017

Really? Wow!


How about this then?

I seem to be having a phase of collecting old 'scopes. I kind of love them, especially the old Tektronix devices.

There's a You Tube channel that I subscribe to by W2AEW where he does loads of fab and groovy things in general, but when I saw this, I just had to have one!

Using an Arduino Uno, a very primitive resistor based DAC and a bit of code, we end up with this, here on the scope I just repaired, a 2465:

Just fantastic!

This is the W2AEW actual video itself including the links to the code:

The Arduino and the DAC look like this on my bench:

and here running on an old 465 'scope:

Local conditions.